efdeportes.com

Revendo os fatores que afetam à propulsão durante o nado

Repasando los factores que afectan la propulsión al nadar

 

*Faculdade de Educação Física e Esporte

da Universidade de São Paulo USP/SP

**Faculdade de Educação Física e Esportes

UNISANTA, Santos, SP

(Brasil)

Joel Moraes Santos Junior* **

Jorge Dias*

Maressa D’Paula Gonçalves Rosa Nogueira*

Antonio Carlos Mansoldo*

mansoldo@usp.br

 

 

 

 

Resumo

          Este estudo é uma revisão de literatura referente aos assuntos relacionados à propulsão dos nados competitivos. Abordamos assuntos que influenciam a propulsão, como: resistências durante o nado e teorias da propulsão. O assunto pesquisado envolveu os primeiros estudos sobre o tema “Propulsão na Natação” até os dias de hoje. Tal referencial teórico foi levantado com o objetivo de oferecer subsídios para alunos, professores e pesquisadores. Concluímos que são vários os fatores que influenciam a propulsão durante os nados, como: Lei da Ação e Reação, Teorema de Bernoulli, etc.

          Unitermos: Nado. Propulsão. Fatores.

 

 
EFDeportes.com, Revista Digital. Buenos Aires, Año 15, Nº 152, Enero de 2011. http://www.efdeportes.com/

1 / 1

Resistência

    A Natação é considerada um esporte peculiar e suas características são bem distintas com relação aos outros devido o meio onde é praticado. Segundo Costill et al. (1995) a água é 1000 vezes mais densa que o ar e, assim, quando o corpo se desloca em uma determinada direção, o mesmo recebe uma resistência que é oposta ao movimento. Esse conceito de resistência é denominado arrasto. A locomoção aquática não depende somente das de habilidades propulsivas, mas também na capacidade de redução do arrasto durante o nado (RIBEIRO, 2006). Esta redução permite ao nadador se locomover em velocidades constantes com menor utilização de energia (McCABE e SANDERS, 2006). Sendo assim, vários são os trabalhos que visam à determinação dessa força de arrasto para a maximização da velocidade. (SEIFERT et. al. 2010, VILLAS BOAS et al. 2004, TOUSSAINT & TROJANS, 2005, BARBOSA et al. 2010).

    Costill et al. (1995) e Maglischo (1999, 2003) descrevem três tipos de arrastos: o arrasto de forma, de onda e o friccional. O primeiro está relacionado ao tamanho e forma do corpo do nadador durante o nado. Arrasto de onda deriva das ondas provocadas pelo atleta ao deslocar-se na água e o arrasto de fricção é a resultante do contacto da pele do nadador com a água.

    Todos esses três componentes são melhores entendidos a partir do momento em que são verificadas as atuações dos fluidos em decorrência ao avanço do nadador no meio líquido.

    Desta forma, destacar a influência das propriedades físicas da água no que concerne à propulsão é inevitável. A água consiste de moléculas que tendem a flutuar em correntes regulares até que algum corpo interrompa o movimento. Essas duas correntes foram definidas por Costill et al. (1995) como fluxo laminar e turbulento, onde o laminar oferece menor resistência ao avanço quando comparado ao turbulento. A medida que o nadador avança, as correntes saem do estado laminar e se transformam em correntes turbulentas. As correntes turbulentas criadas pelos nadadores recebem influências de três fatores: (1) o formato corporal dos nadadores, (2) a orientação de seu corpo na água e (3) a velocidade dos movimentos corporais (MAGLISCHO, 1999).

    O formato corporal dos nadadores tem relação íntima com a criação de fluxos turbulentos que retardam seu deslocamento. Essa afirmação foi corroborada por Toussaint e Beek (1992) ao verificarem alta correlação (r=0,82) entre o tamanho corporal dos nadadores e a criação de resistência ao avanço. Considerando a orientação do corpo com relação á água, o arrasto é aumentado quando os nadadores estão menos horizontalizados com relação á superfície da água e com relação a velocidade, os nadadores ao duplicarem a mesma, recebem uma resistência que é o quadrado dessa velocidade.

    Uma parte considerável do gasto energético na Natação é utilizada para vencer o arrasto (PENDERGAST et. al. 2003). Ao longo da história da Natação, tentativas têm sido feitas para medir as forças de arrasto. Já em 1905, Dubois- Reymond Apud Toussaint et al., (2000) rebocou pessoas com a utilização de um barco a remo, medindo a resistência com a utilização de um dinamômetro. Segundo Toussaint et al, (2000), os pesquisadores Amar na deçada de 20 e foi Karpovich, na década de 30 foram os primeiros a supor que a resistência da água estava relacionada com o quadrado da velocidade de nado de acordo com a equação:

D= K.v2

    onde D denota a força de arrasto, K é uma constante do coeficiente de arrasto, área de secção transversa do corpo e densidade da água, enquanto V é a velocidade do nado. Tanto Amar quanto Karpovich usaram técnicas de medição de determinação da resistência dos nadadores em deslizes passivos através da água. Contudo, suspeitou-se que os movimentos dos nadadores eram criadores de maiores arrastos e desta forma iniciaram as tentativas de se avaliar o arrasto do indivíduo nadando (arrasto ativo) e não apenas sendo rebocado (TOUSSAINT,et al., 2000).

    Técnicas para determinar os arrastos ativos foram desenvolvidas por vários grupos nos anos subseqüentes (TOUSSAINT, et al., 2004). Em meados dos anos 80, Hollander, et al. desenvolveram um equipamento denominado Meansuremet Active Drag System (MAD System) para medir o arrasto ativo (Figura 1). A técnica baseia-se na medição direta das forças das braçadas do nado Crawl. Kolmogorov e Duplisheva (1992) desenvolveram outro método para determinar o arrasto ativo no qual denominaram de perturbação da velocidade onde os nadadores eram conduzidos a nadarem duas tentativas máximas na duração de 30 segundos: uma vez no nado livre, e uma vez nadando atados a um corpo hidrodinâmico que criava uma resistência adicional conhecida. O aspecto que favorece esse método é que o mesmo pode ser aplicado para os quatro nados competitivos, enquanto o sistema MAD é aplicável apenas ao nado Crawl.

Figura 1. Desenho esquemático do sistema MAD System montado em uma piscina de 25 metros onde o mesmo permite que o nadador realize os 

movimentos de braçadas apoiado a plataformas conectadas a um transdutor de força, permitindo a medição direta da força propulsiva das braçadas

    Vários autores têm sugerido que as forças de arrasto do nado na superfície pode ser reduzida melhorando a técnica do mesmo. (MAGLISCHO, 1999, SWEETENHHAM e ATIKINSON, 2003, PLATONOV, 2005). Para testar essa hipótese Hollander et al. (1986) determinou a relação entre as forças de arrasto e o desempenho em velocidade máximas na Natação. Nehuma relação significativa foi obtida (r = -0,27 homens e r = 0,07, nas mulheres). Sendo assim, o autor concluiu que as forças de arrasto por si só não foram determinantes da velocidade máxima de nado.

    Parece que o arrasto é determinado pelas dimensões antropométricas (área do corpo por exemplo, transversal e altura) em grupos de nadadores de elite que são homogêneos em relação à técnica de nado (TOUSSAINT, et al., 2000). Provavelmente uma pequena redução no arrasto pode ser alcançadas pelo alongamento do braço na fase de deslize e em menores áreas de secção tranversa das dimensões corporais (BARBOSA et. al., 2009).

Teorias da propulsão

    Em 1950 Louis Alley apud Counsilman (1977) conduziu um experimento para determinar o melhor padrão de braçada, ou seja, a realização das mesmas com os cotovelos fletidos ou estendidos. O padrão de movimento com os cotovelos fletidos se dava pela flexão do mesmo a 90o e passando por debaixo da linha média do corpo. Alley conclui que a técnica com os braços estendidos era superior a dos cotovelos fletidos. (Figura 2)

    Os mecanismos envolvidos na geração de força propulsiva receberam pouca atenção após a publicação de Alley até a década de 60, quando Counsilman (1966) publicou a sua famosa análise cinemática das braçadas e começou a especular sobre o mecanismo dinâmico da propulsão. O autor apoiou a teoria de que as forças geradas pelas mãos gerando propulsão respeitavam a terceira Lei de Newton (ação e reação).

Figura 2. Visão sobre a mecânica da propulsão. A mão é usada como um remo e percorre uma trajetória de frente para trás, criando propulsão de acordo com a Terceira Lei de Newton

    Logo em seguida um trabalho que foi um marco divisório e revolucionou os achados da época conduzidos por James Counsilman e Ronald Brown em 1971 foi publicado (TOUSSAINT et al., 2000). Os pesquisadores fizeram um experimento onde colocava luzes nas mãos dos melhores nadadores do mundo na década de 70 enquanto os mesmos nadam numa piscina com as luzes apagadas verificando que os melhores nadadores não utilizavam a trajetória retilínea em seus segmentos e sim curvilínea na maioria da trajetória subaquática. Neste novo conceito de braçada surge o modelo da trajetória em S apoiada no Princípio de Bernoulli que diz que a “pressão da água diminui a medida que sua velocidade aumenta”. Desta forma, Cousilman e Brown sugeriram que nadadores de classe internacional aplicassem tração em grandes quantidades de água por um breve período de tempo e logo em seguida mudassem de direção para a aplicação em outras massas de água. Esse modelo foi proposto e muito aceito até então em todos os nados competitivos (Figura 3).

Figura 3. Vista lateral, inferior e frontal do percurso das mãos no estilo crawl

    Pouco tempo depois, Counsilman (1971) também chamou a atenção para a importância das forças de sustentação, que atuam perpendicular à direção do movimento das mãos e afirmou que ambas as forças de sustentação e arrasto são importantes para a propulsão. Esta teoria poderia explicar os movimentos de palmateios realizdaso pelos nadadores nas braçadas observados com a fotografia subaquática. Na mesma década, Counsilman (1977) sugeriu que a velocidade de nadadores poderia ser aumentada por: a) diminuição das forças de arrasto, b) aumento das forças propulsivas geradas pelas braçadas e pernadas e c) combinação dessas duas variáveis.

    Logo em seguida, o pesquisador Cecil Colwin (1984) (citado por Maglischo, 1999) propôs outra teoria da propulsão da Natação que se baseava na formação e na emissão de vórtices. Segundo o autor, os vórtices ou remoinhos, originavam-se nas extremidades dos nadadores devido as diferentes pressões de água. O aparecimento destes remoinhos provoca um aumento da pressão na parte inferior das extremidades e, conseqüentemente, um aumento da força ascensional e da força de propulsão. Colwin distinguiu dois tipos de propulsão resultantes dos vórtices: a Propulsão Laminar que é o resultado das forças de sustentação produzidas pelo fluxo de água em torno de uma lâmina e a Propulsão por Anéis Concorrentes.

    As rápidas mudanças de direção das extremidades do nadador provocam a separação dos vórtices de periferia, que originam os anéis concorrentes. A formação destes anéis vai impulsionar o nadador para frente.

    Pesquisas clássicas apontam também para outros três fatores inerentes a propulsão aquática: direção, ângulo de ataque e velocidade. A direção em que os membros dos nadadores movem-se pode ser definida pelo estudo dos padrões de braçadas de nado, seus ângulos de ataque podem ser determinados com base na inclinação de seus membros e a velocidade está relacionada às mãos e pés ao se deslocarem na água (MAGLISCHO, 2003, STAGER & TANNER, 2008).

    De acordo com esses autores os padrões desenhados na água pelos segmentos corporais dos nadadores nos ajudam a compreender o modo pelo qual os membros nos nadadores afetam os da água. Essa mudança na direção principalmente das mãos tem a finalidade dos nadadores encontrarem maiores volumes de água sem turbulência a fim de um maior deslocamento como descreve o Princípio de Bernoulli (BIXLER e RIEWALD, 2002).

    O ângulo de ataque é o ângulo formado pela inclinação da mão, do braço, do pé ou da perna para a direção em que eles estão se movendo. As primeiras pesquisas na investigação das forças de sustentação com relação aos ângulos de ataque das mãos se deram na década de 70 onde Schleihauf (1979) realizou uma réplica em plástico da mão e a introduziu num canal de água que se deslocava a velocidade conhecida, medindo desta maneira os valores da força de arrasto e a força de sustentação em função do ângulo de ataque da mão e da velocidade da água. Os achados Schleihauf afirmaram que a força propulsiva aumentava consideravelmente quando o ângulo de ataque aproximava-se de 45 graus e diminuía a medida da aproximação dos 90 graus em relação ao centro de massas do corpo. Achados similares foram verificados por Silva et al., (2005) com a utilização de parâmetros tridimensionais.

    Na década de 80, Cousilman e Wasilak investigaram a relação entre a velocidade dos membros e concluíram que os melhores nadadores aceleravam suas mãos desde o início até o final da parte submersa de suas braçadas (MAGLISCHO, 1999). Contudo Schleihauf (1986) verificou que a velocidade da mão se dava através de pulsos, diminuindo e em seguida aumentando a cada mudança importante de direção durante as fases submersas da braçada. Takagi e Wilson (1999) utilizando uma luva instrumentada com transdutores na palma e no dorso registraram o componente perpendicular da força hidrodinâmica e verificaram que maior parte da força se produz na parte final da braçada.

Aspectos relacionados à propulsão

    O desenho (design) da braçada dos membros superiores na Natação são denominados varreduras. As varreduras são divididas em quatro grupos: varredura para fora, para baixo, para dentro e para cima.

Quadro adaptado de Maglischo, 1999

    Atualmente, há um consenço entre os treinadores durante a orientação das varreduras. Os nadadores são orientados a realizarem as ações propulsivas com os cotovelos em uma posição elevada (cotovelo alto) e não rebaixada (cotovelo baixo), criando assim melhor posição biomecânica que resultará em maior eficiência propulsiva. Essa terminologia (cotovelo alto e cotovelo baixo) foi inicialmente proposta por Cousilman ao afirmar que o cotovelo alto permite os nadadores colocarem seus braços numa posição otimizada a fim de tracionar a água para trás (MAGLISCHO, 1999). Além disso a fase propulsiva das braçadas está relacionada à profundidade das mãos, onde as mesmas devem se encontrar entre 15 a 30 centímetro de profundidade antes do início da aplicação de força (NAKAMURA, 1997).

    Contudo, não somente os braços possuem papel na propulsão na Natação. Deschodt et al. (1999) propulseram uma pesquisa onde verificaram a locomoção em quatro procedimentos experimentais: propulsão com apenas um braço, b) apenas com os braços, c) com um braço e duas pernas d) com os dois braços e com as duas pernas. Os autores verificaram aumentos médios de 10% na velocidade máxima quando as pernadas foram inseridas no teste concluindo a eficácia assegurada dos membros inferiores na propulsão aquática. Esse conceito foi incialmente descrito por Hollander et al. (1988) apud Maglischo (2003) utilizando o MAD System. Nesse experimento, 18 nadadores de nível nacional foram submetidos a duas condições: a) nadar em máxima velocidade com movimentos completos (braços e pernas) e b) em máxima velocidade apenas com a utilização dos braços, com as pernas apoiadas por um flutuador. Os resultados demonstraram que o nado com os braços e pernas foi 12% mais veloz do que apenas com os braços concluindo que essas velocidade adicional se deu através das pernadas dos nadadores.

    Parece que existem vários fatores que contribuem para a propulsão aquática, porém ainda não foi relatado qual o maior responsável por este fenômeno. Contudo, é importante a determinação dos parâmetros mecânicos (técnicos e forças de arrasto) para a otimização do desempenho da propulsão em nadadores.

Referências

Outros artigos em Portugués

  www.efdeportes.com/
Búsqueda personalizada

EFDeportes.com, Revista Digital · Año 15 · N° 152 | Buenos Aires, Enero de 2011
© 1997-2011 Derechos reservados